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ABSTRACT

In his critique, Houston argues that optimization theory provides a plausible ac-
count of how animals behave in operant choice experiments. He fails, however, to
take into consideration two critical findings. First, there is no systematic relation-
ship between the reinforcement rate maximization predictions and performance
across different procedures. Second, the results from variable-interval choice pro-
cedures are at best ambiguous, because quite different choice proportions produce
nearly maximal reinforcement rates. That is, in variable-interval schedules, it is vir-
tually impossible for subjects not to produce relatively high reinforcement rates. In
addition, there are several logical or mathematical problems in Houston’s descrip-
tion of the Heyman and Luce model of variable-interval cheice,
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Houston’s critique (1982) is one of several recent papers on whether animals max-
imize reinforcement rate in operant psychology experiments (see, ¢.g., Rachlin, Bat-
talio, Kagel and Green, 1981; Staddon, 1980). According to several investigators,
subjects in operant experiments acquire the response rate that maximizes overall
reinforcement rate (e.g., Rachlin, Green, Kagel and Battalio, 1976) or overall net
gain (rate of food intake less the costs of response effort, e.g., Rachlin et al., 1981).
Other researchers, however, write that the maximizing theory predictions do not
describe how subjects behave (e.g., Heyman and Luce, 1979; Prelec, 1982). One
reason for the disagreement is that the relationship between prediction and behavior
is complex. In the most widely used procedure, the independent concurrent variable-
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interval variable-interval schedule, conc. VI VI, the maximizing predictions approx-
imate the experimental results, while in other procedures, the predictions differ
sizeably from the subject’s behavior (see, e.g., Herrnstein and Heyman, 1979). Con-
sequently different portions of the literature may suggest different conclusions. For
example, Houston (1982) says that the discrepancy between the maximizing predic-
tions and responding in the independent conc. VI VI procedure should be ignored
because it is so small. In contrast, Prelec (1982) writes that the results from the conc.
VI VI schedule do not provide a decisive test for maximizing theory, but that the
results from other procedures, for example single schedule experiments, show that
maximization theory fails to predict operant behavior.

One way to include all the data is to test whether the maximizing predictions and
behavior covary across experimental procedures. Systematic covariation, even with
large absolute deviations between predictions and results, would suggest that
animals are in some sense maximizers (for example, maximizers with a limited
capacity for learning the contingencies), whereas the failure to find systematic
covariation across procedures would suggest that the approximation in the indepen-
dent conc. VI VI procedure was a fortuitous good fit. Consequently, a description
of the correlation between maximizing theory and behavior in different choice pro-
cedures will provide the basis for evaluating optimization theory. Consider first,
though, a few basic findings and issues. ‘

1. INDEPENDENT CONC. VI VI SCHEDULE PERFORMANCE

The experimental result that has motivated theoretical interest in conc. VI VI
schedules and other operant choice procedures is the relationship between the
distribution of behavior and the distribution of reinforcements. There are two
manipulandums, and the subject typically responds to each according to the overall
reinforcement proportions. For example, if an experimental session provided 60
reinforcers at one response lever and 20 reinforcers at the other response lever, the
subject would switch from lever to lever (the reinforcers occur unpredictably) but
spend about 75% of the session time at the 60 reinforcement lever. This is called
matching (Herrnstein, 1970) and because of its generality across species and
experimental procedures, it is considered an empirical law, written:

BI/(BI + Bz) = Rz/(R1 + Rz) (1)

where B; is either total responses or total time at schedule i, and R; is total
reinforcements earned at schedule i. Importantly, since delivery of a reinforcer
depends primarily on the passage of time, the reinforcement proportions are
approximately constant. This means that it is possible for time and response
proportions to deviate substantially from the reinforcement proportions. However,
the matching relation, Equation 1, generally holds, and reinforcement maximizing
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theory is one possible explanation of why Equation 1 applies, and why it applies so
generally. _

Note that the matching relation is described in terms of reinforcement
proportions, Ri/(R:1 + R3). In contrast, according to maximization theory,
behavior stabilizes at the choice proportion that produces the greatest overall
reinforcement rate, the sum R, plus R,. Therefore, if matching is normative, the
matching time allocation proportion must be the one that maximizes overall
reinforcement rate. (For most procedures, reinforcement rate depends more on time
allocation than it does on response allocation.) Or put somewhat differently,
animals maximize reinforcement rate, and a by-product is the matching relation
(see, e.g., Shimp, 1969).

Heyman and Luce used a mathematical model of the conc. VI VI procedure to
test whether the time allocation proportion that maximized reinforcement rate was
the same as the time allocation proportion that matched the reinforcement
proportions. They found that maximizing and matching (Equation 1) predicted
different choice proportions, although the difference was small for typical response
rates. It is not clear whether Houston accepts this resuft. He has co-authored a paper
that shows that matching and maximizing are different (Houston and McNamara,
1981), but now writes, *‘maximizing on independent conc. VI VI schedules does
imply matching.”” Apparently, Houston means ‘imply’ in the sense that the
discrepancies between the maximizing and matching predictions (Equation 1) were
not important, for elsewhere he writes, “‘it is possible that although, say,
maximizing does not strictly imply matching it results in a very good approximation
to it — good enough to be called matching if it was the behavior produced by an
animal.’” Houston is saying that although maximizing may not be equivalent to the
formal representation of the empirical results, Equation 1, it approximates the
results, and it does so with the same degree of accuracy as Equation 1. There are
several reasons for rejecting this conclusion.

First, maximization theory (e.g., Houston and McNamara, 1981) predicts time
allocation proportions that are somewhat more extreme than the matching law
predictions (i.e., toward 1.0). The results, however, do not follow this pattern of
deviation. Instead variation is centered about the matching law (Baum, 1979). This
difference is consistent with the view that matching and maximizing are- different
processes. Second, for the moment accept Houston’s assumption that the
differences between the maximizing and matching predictions are too small to be
detected experimentally. This could mean, as Houston suggests, that matching and
maximizing are equally good accounts of how subjects behave. Alternatively, it
could mean that the experimental procedure was not semsitive enough to detect
theoretically significant differences. Therefore, even if Houston’s assumption is
accepted, it is not possible to conclude that maximization implies matching. Third,
the good fit of maximizing theory to behavior in the independent procedure may be
fortuitous. The following overview of the literature evaluates this hypothesis.
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In choice procedures that use two. interdependent rather. than independent
variable-interval schedules {e.g., Fantino, Squires, Delbruck and Peterson, 1972;
Stubbs and Pliskoff, 1969) the time allocation proportion that maximizes
reinforcement rate differs from the matching law prediction in the direction of
indifference, 50% (see Heyman and Luce, 1979; Staddon, Hinson and Kram, 1981).
For example, in a VI 160-sec VI 480-sec interdependent schedule with a 1.5-sec
changeover delay (Findley, 1958), a time allocation proportion.of about 65%
maximizes reinforcement rate, whereas matching predicts a time allocation
proportion of 75% (see Table 1 below). This difference is experimentally detectable,
and Baum’s review (1979) shows that the matching equation leads to the more
accurate account. .

In procedures that give the subject a choice between a response requirement and
an interval reguirement, concurrent VI VR schedules, the matching rule and
maximizing predictions generally differ, with the magnitude of the difference
depending on the particular combination of schedules. For the schedules used in one
study (Herrnstein and Heyman, 1979), the subjects should have spent more than
50% of the session time on the response key associated with the variable-ratio
schedule in order to maximize the overall reinforcement rate. Instead, the subjects
spent more than 50% of the session time on the schedule associated with the
variable-interval schedule, and time allocation proportions matched reinforcement
proportions. :

There are at least two studies in which the experimenter explicitly arranged a
contingency that made it impossible for subjects simultaneously to maximize overall
reinforcement rate and to match response proportions to reinforcement proportions
(Heyman, 1977; Mazur, 1982). In both studies, maximizing failed to predict the
experimental results, and in Mazur’s experiment, the subjects continued to match
respense proportions to reinforcement proportions, and.in Heyman’s experiment
there was a tendency for time proportions-to continue to match. (Also see Vaughan,
1981.) . ‘

This brief overview supports three general conclusions: (1) matching is not the
same as reinforcement rate maximization in choice procedures that use at least one
variable-interval reinforcement schedule; (2) the maximizing predictions and time
allocation measures do not covary across experimental procedures; (3)
consequently, the differences, however small, between the time allocation
proportions that maximize overall reinforcement rate and the time allocation
proportions that match the reinforcement proportions in independent conc. VI VI
schedules should not be ignored. Indeed, the differences prove to be the theoretically
significant finding; they signal the fact that animals do not maximize reinforcement
rate in operant choice experiments. _ _

Houston’s second argument in favor of the maximizing hypothesis is that subjects
earn close to the maximum reinforcement rate in concurrent interval experiments.
He writes, ‘‘an alternative to asking if matching results in maximizing is .to
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investigate how close the obtained reinforcement rate is to the maximum rate.’’ Note
that Houston’s question about reinforcement rates is somewhat different than the
question of the time allocation proportion that maximizes reinforcement rate,
because a given deviation from the maximizing time allocation will produce a large
or small reinforcement loss depending on the contingency. Thus in some
contingencies, small departures from maximizing will be costly, while in other
contingencies, large departures will produce nearly maximal reinforcement rates.
For concurrent interval schedules, Houston argues that maximizing does a good job
at predicting behavior because subjects obtain close to the maximum reinforcement
rate: “‘on the independent conc. VI VI, the best maximizing strategy does VEry
well. ..”” However, this argument is only effective if some choice patterns produce
low reinforcement rates and subjects adjust their behavior in the direction of higher
reinforcement rates. But this, surprisingly, is not the case. In concurrent schedules,
a wide range of choice distributions produces nearly maximal reinforcement rates.
For example, Table 1 shows that subjects get about the same reinforcement rate for
indifference, a 50% time allocation, as they do for matching, a 75% time allocation.
Nevertheless, subjects match, and Table 1 suggests that they do so independently of
the overall reinforcement rates.

TABLE 1

CHOICE AND OVERALL REINFORCEMENTS PER HOUR IN CONCURRENT VI VI
SCHEDULES

The caleulations were based on Houston and McNamara's model of the independent conc. VI VI
schedule and Heyman and Luce’s model of the interdependent schedule. The schedule values are V1
160-sec and VI 480-sec, with & 1.5-sec changeover delay. The changeover rate parameter was set to 5 sec
{see Heyman and Luce, 1979). The equations for the overall reinforcement rates are in Heyman (1982)
and Houston and McNamara (1981).

Choice: Reinforcement %° Reinforcements/hour: Reinforcements/hour:
T/(T + T2) independent VI VI interdependent VI VI
25%, 74.0% 28.8153 28.368
50 T4.7% 29.495 29.190
607 74.9% 29.608 29.283
650" 75.0% 29.647 29.296
70T 75.1% 25.676 29.283
75% 75.2% 29.694 29.236
T8%"° 75.3% 29.696 29.183
80, 75.3% 29,695 29.133
90%, 75.9% 20.578 28.477

265% is the choice proportion that maximizes reinforcement rate in the interdependent procedure.
b7%% is the choice proportion that maximizes reinforcement rate in the independent procedure.

“The expected reinforcement proportions are for the independent procedure. The expected reinforcement
proportion for the interdependent procedure is 75% (V2/(V1 + V2)) for all choice proportions between
0.0 and 1.0.
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INTERDEPENDENT CONCURRENT INTERVAL SCHEDULES

Heyman and Luce pointed out that the time allocation proportion that maximizes
reinforcement rate in concurrent schedules with interdependent timers predicts
sizeable undermatching, whereas subjects approximate matching. Houston does not
directly dispute the discrepancy from maximizing theory, but he does suggest that
there are errors in Heyman and Luce’s model and discussion of the experimental
results. The criticism of the model has to do with the two different ways of arranging
interdependent schedules.

The purpose of the interdependent procedure is to hold the obtained
reinforcement proportions precisely constant. This is arranged by (a) using two
variable-interval timers and stopping both whenever one sets up a reinforcer (e.g.,
Fantino et al., 1972), or by (b) using a single timer and assigning a reinforcer to one
of the response levers when the interval elapses (Stubbs and Pliskoff, 1969). The two
contingencies differ in only one way. In the single timer contingency, the
reinforcement establishes new intervals at both response manipulandums with
expected durations of p¥ and (1 — p) ¥V, where p is the probability of assignment and
V" is the mean timer interval (see Staddon et al., 1981, for details). In the two
variable-timer procedure, a reinforcement does not reset the timer interval at the
unattended response manipulandum. This difference  appears to be without
theoretical significance, since the maximizing solutions for the two procedures are
virtually identical (compare Heyman and Luce, 1979, with Staddon et al., 1981).

The interdependent schedule is relevant to maximizing theory because of its
relationship with the independent conc. VI VI schedule: the reinforcement
contingencies are different but the response requirements are identical.
Consequently, maximizing theory must predict that subjects will behave differently
in the two procedures, with undermatching the prediction for the interdependent.
Houston suggests that, contrary to Heyman and Luce’s discussion, the maximizing
predictions fit the data. However, the most comprehensive review to date (Baum,
1979) shows no such trend: matching implies a slope of 1.0 for the line describing
the correlation between reinforcement ratios and time allocation ratios (Baum,
1974). The median slope (by study) of the regression line is 0.96 in the independent
procedure, and it is nearly the same, 0.98, in the interdependent procedure {Baum,
1979). This does not mean that all aspects of performance in the two procedures are
the same; however, no systematic difference relevant to maximizing theory has been
reported.

CONCURRENT VARIABLE-INTERVAL VARIABLE-RATIO SCHEDULES
Most researchers agree that maximizing theory is incompatible with performance

in conc. VI VR schedules (but for an exception, see Rachlin et al., 1981). For
example, if Houston’s model of response cost (Appendix 3} is combined with the
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results reported by Herrnstein and Heyman (1979}, maximizing theory leads to the
unrealistic prediction that the subjects were obtaining negative reinforcement rates.
(This is because the departures from the maximizing time allocation proportions
were so large that it was necessary to assume relatively high response costs in order
to rationalize the obtained time allocation proportions as an instance of
maximizing.) Possibly a plausible maximizing account of conc. VI VR performance
will appear, but for reasons given elsewhere, this seems unlikely (Baum and Nevin,
1981; Herrnstein, 1981},

THEORETICAL ISSUES

Mathematical models

In Appendix 1 and Table 1, Houston compares the Staddon and Motheral (1978)
and the Heyman and Luce models of conc. VI VI performance. This is of some
theoretical importance, because Houston writes that there are conditions in which
the two models make identical predictions, even though the authors claim opposite
conclusions.* Houston’s comparison, however, requires conditions that either do
not occur or are not logically possible. For example, Houston assumes that local
response rate varies with changeover rate, yet it is well established that the two
measures are independent: changeover rate varies with time allocation, whereas
local response rate remains approximately constant with changes in time allocation
(e.g., Stubbs and Pliskoff, 1969). The details of this and related problems are
described in Appendix 1, below.

Evolutionary accounts of matching

At present there are several different maximizing theories of operant behavior.
The original one was that animals maximize overall reinforcement rate. However,
most researchers now acknowledge that this is incorrect (see, e.g., Baum, 1981;
Staddon and Motheral, 1978). One response has been to suggest an evolutionary
theory of operant behavior that entails an optimization principle (e.g., Staddon,
1980). Matching, it is said, evolved because it was the optimal pattern of responding
in the animal’s natural environment. Thus, in experiments that provide conditions
that are similar to the animal’s niche, matching will produce high reinforcement
rates, but in experimental settings that do not mimic the animal’s environment,
matching will not be the adaptive behavior.

Houston criticizes Heyman and Luce for not discussing evolutionary accounts of
matching. However, at the time that we wrote our paper it was believed that .

*In an earlier paper (Heyman, 1979), I stated that the Staddon and Motheral (1978) and Heyman and
Luce {1979) models predicted the same reinforcement rates in the special condition that the subject
switched sides after each response. This is incorrect, as Staddon and Motheral (1979) and now Houston
(1982) point. out.
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maximizing overall reinforcement rate and matching were equivalent {(e.g., Rachlin
et al., 1976) and there were no alternative theories to test. Moreover, now some four
years later, the evolutionary theory is still more a suggestion than a testable
hypothesis. Note that there are two important assumptions: matching is the product
of selective pressures and matching evolved because it was optimal. However, the
logic of evolutionary processes allows for biological phenomena that are not the
product of adaptation, and even with selective forces, an optimal solution is by no
means necessary. Whatever works best given the alternatives is most likely to persist.

It is, I believe, fair to say that matching remains a mystery. All species yet tested
choose between two reinforcement schedules according to the symmetry described
by Equation 1. However, why organisms should do so remains unexplained.

APPENDIX |

Houston states that there are conditions in which the Staddon and Motheral
(1978) and the Heyman and Luce models of conc. VI VI schedules predict the same
reinforcement rates. These conditions, however, include relations that are contra-
dicted by the data and are logically impossibie. Consequently his claim is incorrect.
First, consider Houston’s extension of the Heyman and Luce model. Houston writes
that the Heyman and Luce model implies that the local response rates and change-
over rates are related by the expression, LR; = 1/r; + u;, where LR; is the local
respouse rate at manipulandum i, r; is the mean local interresponse time at
manipulandum #, and #; is the mean rate of switching from manipulandum /. Note
that Houston’s modification assumes a correlation between local response rate, LR;,
and changeover rate, u;. However, there is no logical connection between these two
measures, and, as mentioned above, there is no empirical connection either.

Second, in keeping with the data, the Heyman and Luce model says nothing
explicit or implicit about the relationship between local response rate and
changeover rate. The model was derived for procedures that do not use a response
manipulandum, which is equivalent to a local response rate of 0.0, and if the model
is extended to include a representation of a response requirement then it is necessary
to estimate the expected time from the termination of a timer interval to the next
response. The pattern of responding determines this delay period. For example, for
an exponential distribution of interresponse times, the expected delay is the local
interresponse time, r; = 4/b;, where ; is total time at manipulandum i and b; is total
responses at manipulandum /. For a discussion of the delay for other interresponse
time distributions, see Heyman (1982).

Third, Houston’s modification of the Heyman and Luce model leads to logical
contradictions. Throughout the paper, Houston uses the notation #; to indicate the
mean interresponse time at manipulandum /, where 7; is defined as above. Then he
modifies the Heyman and Luce model with the definition that the local response rate
is 1/r; plus the probability of switching, #;. This makes no sense since by definition
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r; already includes all responses and all time spent at manipulandum ¢, Another way
to see that this definition is logically faulty is to consider the relationship between
the average number of responses per visit to a manipulandum and the total number
of responses at the manipulandum. This relationship is simply B; = (C/2)S;, where
B; is total responses at the manipulandum, C is total changeovers, and 3; is the
average number of responses per visit. In other words, the average number of
responses per visit is precisely proportional to the overall response totals: B1/B; =
S:/8:. However, according to Housten’s modification of the Heyman and Luce
model there are 1/ru; + 1 responses per visit to a manipulandum, and this leads
to the erroncous conclusion that the average number of responses per visit is not
proportional to the total number of responses. {To determine the average number
of responses per visit from Houston’s modification of the Heyman and Luce model
solve the equation a@w:i/(1 + ran) = 1/u;, where a; is the average number of
responses per visit and the other notation is as previously defined. Also note that
it is generally the case that r; = r2.)

The Staddon and Motheral model (1978) describes reinforcement rate as a
function of the overall response rates. Houston extends the model to include
definitions of the local response rates and changeover rates. His modifications are
similar to those made by Staddon and Motheral (1979) in a rejoinder to a critigue
of their original model. These modifications lead to logical contradictions.

Houston writes that according to Staddon and Motheral (1978, 1979) the expected
visit times at a manipulandum are related to the overall response rates, as follows.
Let x and v be the two overall response rates. For example at manipulandum 1, the
overall response rate is x = bi/(t, + 1), where by is total responses at the
manipulandum and the denominator is the entire session time. Next, it is stated that
the average time per visit to a manipulandum, #;, is equal to the reciprocal of the
overall response rate at the other manipulandum (see Houston, Appendix 1 and
Table 6). For example, Houston says that the average time per visit to side 1is 1/y
(where y is the overall response rate at side 2). Finally, the local response rates, b;/t;
are equal to the sum of the two overall response rates, x + y, which is in accord
with the generally accepted assumption that 1/r = 1/r.

Now recall that in a concurrent schedule contingency a reinforcement can occur
either during a visit, at the end of a local interresponse time, or it can occur after
a changeover, at the end of a vigit time to the other manipulandum. These are the
only two possibilities. Therefore according to Houston’s description of the Staddon
and Motheral model, the expected time between reinforcements at manipulandum
lis V1 + 1/{x + y) if the reinforcement sets up during a visit or it is V; + 1/xif
the reinforcement sets up while the subject is at manipulandum 2, where ¥ is the
mean VI timer interval. But this contradicts Staddon and Motheral’s definition that
the expected time between reinforcements at side 1 is V7 + 1/x. The problem is that
the Staddon and Motheral model incorrectly identifies the visit time at one
manipulandum, #;, with the reciprocal of the overall response rate at the other
manipulandum.
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