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In experiments that provide two reinforcement schedules (concurrent sched-
ules), subjects switch back and forth between the two alternatives, respondiprg
for a while at each. The result that has received most attention is that the overall
division of behavior between the two schedules approximates the overall division
of reinforcements between the two schedules (Herrnstein, 1961, 1970). That is,
By/By = R[R,, where B; is either total responses or total time at schedule i
and R; is total reinforcement at schedule i. Called matching, this result is often
referred to as a law because of its empirical generality. For example, the avail-
able evidence shows that the matching law describes concurrent schedule per-
formance independently of both individual and species differences.

Because of the generality of the matching law, recent theoretical accounts of
instrumental behavior invariably include a derivation of the matching predictions
(e.g., Killeen, 1982; Myerson and Miezin, 1980; Rachlin, Green, Kagel, and
Battalio, 1976; Staddon, 1980). These derivations proceed from quite different
assumptions; consequently, current theories of instrumental behavior differ
quite markedly. In this chapter three types of theory are assessed according to
how well they predict time allocation in concurrent schedules.

Most theories of matching can be placed in one of three groups: (1) theories
that focus on the relation between responding and its overall consequences (e.g.,
Rachlin, 1980; Staddon, 1980); (2) theories that focus on the relation between
responding and somewhat less molar consequences, such as the local reinforce-
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ment rates (reinforcement at an alternative divided by time at the alternative,
e.g., Herrnstein and Vaughan, 1980; Myerson and Miezin, 1980); and (3) theo-
ries that are compatible with the view that time allocation in concurrent sched-
ules in an unconditioned reinforcement effect, that is, the amount of time a
subject spends at a schedule is elicited (e.g., Herrnstein, 1979; Killeen, 1982;
McDowell and Kessel, 1979). The first two approaches are representative of the
emphasis in operant psychology on the law of effect: consequences, however
measured, select an adaptive if not optimal pattern of behavior. The third ap-
proach differs somewhat from most accounts of instrumental behavior. For
example, in Killeen’s (in press) derivation of matching, reward elicits a change
in activity level (there is no explicit or implicit feedback loop). The predictions
for each approach are outlined next.

Matching is derived from overall consequences in theories that assume that
reinforced behavior is governed by a maximization principle. For example, Rach-
lin and his colleagues (Rachlin et al., 1976) have argued that the distribution of
behavior that produces the maximum overall good predicts the allocation of
time spent responding in a concurrent schedule. In some accounts the overall
good is the nominal reinforcement rate (e.g., Rachlin et al., 1976), and in others,
the overall good is the overall reinforcement rate plus other factors, such as re-
sponse cost and leisure (Rachlin, Battalio, Kagel, and Green, 1981). Whether
either of these theories is correct can be determined by comparing the reinforce-
ment rate maximizing predictions with performance in schedules that use dif-
ferent contingencies: If subjects maximize reinforcement rate then the predic-
tions and performance should simply converge; alternatively, if subjects maxi-
mize some more complex response consequernce, for example reinforcement less
response cost, then reinforcement rate maximization solutions and performance
should systematically covary, For example, if the time allocations that maxi-
mized reinforcement rate in three different procedures were shown to be 1:1,
3:1, and 9:1, then time allocation should be least biased in the first procedure
and most biased in the third procedure. In effect then the test is an application
of Meehl’s (1950) method for determining whether a stimulus is reinforcing o1
not. Also note that the evaluation assumes a dynamic maximizing process: Pat-
terns of behavior that produce larger values of the good to be maximized are
more likely to persist than patterns of behavior that produce smaller values.
Herrnstein and Vaughan (1980) have aptly labeled this view of the dynamics of
matching “literal” maximization theory.

The independent variable in local reinforcement rate theories (Herrnstein and
Vaughan, 1980; Myerson and Miezin, 1980; Staddon, 1977) is the discrepancy
between the two local reinforcement rates, and the process that leads to match-
ing is equalization of local reinforcement rates. For example, Herrnstein and
Vaughan (1980) suggested that subjects switch to the alternative with the higher
local reinforcement rate. Over the long run this pattern of switching will produce
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equal local reinforcement rates, a result equivalent to matching (R,/T; =R,/ T,
is equivalent to R /R, = T/ T,).

Two equalization theory predictions were tested. First, the theory predicts
that subjects in concurrent schedules should match even though other distribu-
tions of behavior produce higher reinforcement rates. (In contrast, maximization
theory predicts that matching will not occur if other distributions produce
higher reinforcement rates.) Second, equalization theory predicts that switching
should be an orderly function of changes in local reinforcement rates. For exam-
ple, in concurrent procedures that use variable-interval schedules, local rein-
forcement rates change as a function of time since the last switch. Therefore, if
subjects in experiments are compensating for local reinforcement rate differ-
ences, switching probabilities should also change as a function of time. Note that
Herrnstein and Vaughan’s definition of a literal theory applies here as well: The
evaluation of equalization theory assumes that behavior that produces smaller
differences between local reinforcement rates prevails over behavior that pro-
duces larger differences. ’

Elicitation models of concurrent schedule performance have not been devel-
oped in any detail. It is nevertheless possible to describe conditions that would
disprove this approach. First, as with equalization theory, elicitation theory
implies that concurrent schedule performance is independent of the overall rein-
forcement rate. Second, since elicitation is a ballistic as opposed to an adjustive
process, switching should not vary dynamically with the consequences of switch-
ing. Elicitation theory can therefore be eliminated from consideration if it is
shown that time allocation depends on either feedback from the overall conse-
quences of responding or feedback from the consequences of switching.

Mathematical models provide the most practical way to describe the relation
between time allocation and its consequences in concurrent schedule experi-
ments. These models, referred to as schedule feedback functions (Baum, 1973),
entail two terms. One represents the subject’s performance; the other represents
the schedule. For example, consider a variable-ratio schedule. The expected rein-
forcement rate, E(R), is p/ VRr, where p is the proportion of time at the sched-
ule and r is the mean interresponse time: The expected reinforcement rate is pro-
portional to the time spent at the schedule. In contrast, interval schedules, which
are much more frequently used in concurrent procedures, are mathematically
more complex. This is because changeover rate and pattern of responding affect
reinforcement rate. The discussion of these issues begins with the derivation of
an elementary concurrent schedule model.

INDEPENDENT INTERVAL SCHEDULES

Assume that the experiment uses a concurrent schedule with two independent
timers, a continuous-response requirement, and no delay between a changeover
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Figure 20-1. The sequence of events in a concurrent VT VT schedule. Thz
rectangular excursions in the first and fourth lines indicate that a timer inter-
val elapsed. The diagonal slashes across the second and third lines indicatz
that the subject just received a reinforcement. If the subject is present when
the interval elapses, a reinforcer is delivered immediately, events a and b. If
the subject is absent when an interval elapses, the reinforcer is held, events ¢
and d, and not delivered until the subject returns, events e and f.
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and reinforcement. Figure 20-1 shows the sequential structure of performance
in this situation. Sides 1 and 2 refer to the two independently operating variable-
interval timers, each distinguished by a stimulus. Lines 2 and 3, labeled “subject
present,” show that the subject switches back and forth between the two altzr-
natives. This produces two different ways for reinforcement to occur. First, an
interval may elapse while the subject is present. This yields an immediate rein-
forcement, and, simultaneously, the timer restarts with a new interval (events a
and b in Figure 20-1). Second, an interval may elapse while the subject is absent
(events ¢ and d). In this case the reinforcer is held and the timer is not restarted
until the subject returns. Upon returning, the reinforcement is immediately de-
livered and the timer is restarted (events e and f).

Second, assume an exponential distribution of intervals for each timer, with
means V; and V,. This approximates a commonly used schedule (Fleshler end
Hoffman, 1962).

Third, assume that the temporal pattern of switching is on the continuum de-
picted in Figure 20-2. One endpoint is produced by a Poisson process; the other
is produced by a subject that switches at precisely time ¢ since the last switch.
These two endpoints define two related continuums. First, for the Poisson pro-
cess, the likelihood of the next switch does not increase as a function of time,
which is to say that certainty is minimized. In contrast, for fixed-time switch-
ing, the probability of the next switch is O at time less than ¢ and 1.0 at £, which
is to say that certainty is maximized. Second, reinforcement rate varies with cer-
tainty of switching. For a given rate of switching, the Poisson process produces a
lower reinforcement rate than any regularly increasing pattern (see Appendix
20A for a discussion of this point), whereas the fixed-time pattern produces a
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Figure 20-2. Three different switching patterns in a concurrent schedule. fn
the first pattern the conditional probability of a switch is constant. This pat-
tern is produced by a Poisson process. In the second pattern the conditional
probability of a switch increases. This pattern was produced by a uniform
distribution of interchangeover times, with each interval assigned a 10 percent
relative frequency. In the third pattern the probability of a switch is 1.0 at
5 seconds. This pattern is produced by an interchangeover time distribution
that takes only one value, 5 seconds.
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higher reinforcement rate than any other switching pattern (see Appendix 204).
In between these critical values, the certainty of the next switch increases as a
function of time, and these patterns produce reinforcement rates that fall along
the interval set by Poisson and fixed-time switching. The middle pattern in Fig-
ure 20-2 is one example. It is produced by a uniform distribution of interswitch
times.

With the foregoing definitions it is possible to derive equations that describe
the relation between time allocation and reinforcement rate in concurrent inter-
val schedules for the range of response patterns depicted in Figure 20-2. (Note
that this range is likely to include many if not most switching patterns.) The gen-
eral strategy is to calculate the expected number of reinforcements per visit to
an alternative and to distinguish the different ways reinforcement can occur
during a visit.

First consider the case when a timer interval elapses while the subject is pres-
ent. Figure 20-1 shows that these reinforcers are delivered immediately. There-
fore their expected number per visit is simply £ (¢)]V;, where E(t;) is the mean
visit time and V; is the mean timer interval.
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Second, a timer can elapse while the subject is not present. This can occur no
more than once per absence from the side (since the reinforcer is held), and the
expected probability of this event depends on the mean timer interval and the
mean rate and pattern of switching back. For Poisson switching, the probability
that the timer interval elapsed during an absence is

oo —uit ( —t/V-) _ 1
;€ 1—e I)ydt = ————, (20.1)
fo Hi L+ V;

where p e "is the probability that the subject returned at time ¢, 1 —e—t/Vf
is the probability that the timer interval elapsed by time 7, and 1/ I/} is the timer
rate constant. For the pattern of switching that is most different from Poisson,
fixed time, the probability that a timer elapsed during an absenceis 1 —¢ il Vf,
where T; is the fixed time the subject spends at the other alternative.

The expected number of reinforcements for the two different ways that rein-
forcement can occur having now been calculated, the last step is to calculate the
expected time per visit. For a Poisson switching pattern this is

S2 e M ar = L (20.2)
0 M

For a fixed-time switching pattern, the expected time per visit is simply 7}.
Therefore the expected reinforcement rate for Poisson switching is

YVitg + 1A+ Vi) + 1 Vouy + 11+, V3)
/gy + 1, ’

(20.3)

where 1/V; is the programmed reinforcement rate at side i, and 1/p; is the
expected time per visit at side i For the fixed-time switching pattern, the ex-
pected rate is

T,V -
T,/Vi+1l-—e 2/ YaT, v tl-e T Vs

Ty + T, ’

(20.4)

where T} is the expected time per visit at side i.

Equations (20.3) and (20.4) may be rewritten so that they correspond to the
variables usually discussed, the overall allocation of behavior, p, and reinforce-
ment rate. In the notation for Poisson switching, the overall time proportions are
(Yu)/(Muy + Yuy) = p and (1uy)/(1/py + /i) = 1 —p. While in fixed-
time switching notation, these proportions are T,/(T; + T,) = p and T,/
(T, +T;) = 1~ p. Therefore Eq. (20.3) becomes

1- 1-
E(R)=p_+ p p p

+ +
vy Vi +1/u, Va Vy+ 1/

) (20.3a)
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and with some algebraic manipulation, Eq. (20.4) is

(20.42)
- 1- p
E(R) = — + 4 + =2 :
v Vit(4,-Vy) v, Vot (4,-V3)
where
4= - (20.4b)

Put this way, the relation between responding and reinforcement rate in concur-
rent schedules is easily stated in the standard measures.

With probability p the subject is at side 1 when the side 1 timer sets up. This
occurs at a mean rate of 1/V,. With probability (1 — p) the subject is at side 2
when the timer sets up at side 1. For Poisson switching this introduces a delay
equal to the mean time away, 1/u, , so that these reinforcements occur at rate
1/(Vy + 1/uy ). For fixed-time (optimal) switching the delay is
ST

V;

T;/1- A (20.4¢)

]

To get some idea of the effect of different patterns of switching on the delay
from setup to reinforcement consider the case when a Poisson subject and fixed-
time subject switch at the same rate, that is #; = 1/T;. For typical timer and
changeover rates, the fixed time delay is approximately T;/2, whereas the Pois-
son delay is 1/y;. This means that the Poisson delay is approximately twice as
long for the same rate of switching. However, the effect on overall reinforcement
rate (discussed more fully later) is quite small since the corresponding percentage
difference between the two interreinforcement intervals is approximately 7;/2V;,
and this fraction (usually less than 1/10) only applies to reinforcers that set up
at the unattended alternative. '

Equations (20.3a) and (20.4a) show that the overall reinforcement rate in
concurrent schedules depends on the absolute local switching rates (e.g., 1/T;)
and on the relative magnitude of the local switching rates. These measures, how-
ever, are usually discussed somewhat differently as the overall changeover rate
(e.g.,2/(Ty + T,) in fixed-time notation) and overall time allocation p.

Figures 20-3 and 20-4 show how the expected reinforcement rate changes
with the usual measures, overall changeover rate, and overall time allocation in a
concurrent interval schedule with a continuous response requirement (conc VT
60 seconds VT 180 seconds). The x axis in each figure i§ time allocation, and the
Y axis is expected reinforcement rate. The label [ identifies the sum of the local
changeover rates, and for each curve this sum is constant. This quantity has been
discussed by a number of investigators (e.g., Heyman, 1977, 1979; Hunter and
Davison, 1978; Myerson and Miezin, 1980; Nevin and Baum, 1980), and it seems
that in situations in which the overall programmed reinforcement rates are con-
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Figure 20-3. The expected reinforcement rate in a concurrent VT 60-sec-
ond VT 180-second schedule as a function of time spent at the VT 60-
second schedule, The switching pattern is Poisson. Each curve corresponds
to a different level of the tendency to switch, /. For example, at / = 10 sec-
ond, the local rates of switching sum to 6/minute {(and the overail rate is
2p(1 - p)/1, see text).
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stant, local changeover rates vary reciprocally so that their sum (1/T; + 1/,
or u; +u,) is approximately constant. This implies (see Appendix 20B for
proof) that overall changeover rate is a function of overall time allocation
according to the approximation

~

x = 2[(EQ@)+E(t)) = 2p(1-p)/T . (20.5)

where x is overall changeover rate,  is equal to the reciprocal of the approxi-
mately constant sum of the two local changeover rates. Thatis, 7 = 1/(u; + L)
in the notation for Poisson switching and / = T, T, /(T + T, ) in the notation
for fixed-time switching.
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Figure 20-4. Expected reinforcement rate in a concurrent VT 60-second
VT 180-second schedule with a fixed-time switching process. This pattern of
switching is quite different than Poisson switching (see Figure 20-2), yet the
consequences of the two patterns are virtually the same. This finding suggests
that it is unlikely that subjects learn the optimal switching pattern in concur-
rent schedules.
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Figures 20-3 and 20-4 show (1) that for both patterns of switching, large
changes in time allocation produce small changes in overall reinforcement rate;
(2) different patterns of switching produce nearly the same reinforcement rate;
and (3) relatedly, the relation between time allocation and overall reinforcement
rate is independent of the pattern of switching. Moreover, the effect of time allo-
cation on reinforcement is at a minimum at changeover rates that are represen-
tative of experimental subjects. For example, in a study by Brownstein and Plis-
koff (1968), the median changeover rates corresponded to a value of / of about
6.6 seconds, and in a VT 60-second VT 180-second condition, the subjects,
pigeons, shifted from about a 0.50 to 0.75 division of time. This means that
nearly perfect matching was accompanied by no more than a 2 percent change
in overall reinforcement rate. Similarly, given the schedule values and changeover
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rates, optimal and purely random (Poisson) switching could not have produced
more than a 2 percent difference in reinforcement rates.

Figures 20-3 and 20-4, then, do not lend much support to theories of con-
current schedule performance that include overall reinforcement rate as an inde-
pendent variable. However, these figures do establish a methodological point.
Rachlin (1979) questioned whether the equation given here as (20.3a) provided
a general description of concurrent interval schedule performance since it might
be the case that different patterns of switching yield different reinforcement
rate feedback functions. Comparison of Eq. (20.3a) and Eq. (20.4a) settles the
issue. If the optimal switching pattern (fixed time) and the contingency indepen-
dent pattern (Poisson) produce nearly identical expected reinforcement rates, it
follows that the generality of the equations does not depend on the temporal
pattern of switching. Put somewhat differently: Since pattern of switching has
virtually no effect on reinforcement rate, both the Poisson and fixed-time mod-
els will accurately predict the relation between time allocation and overall rein-
forcement rate.

Equations (20.3a) and (20.4a) represent an elementary concurrent variable-
interval schedule. In experiments there are typically additional contingencies.
The most frequent additions are a discrete response requirement, such as a lever
press, and a changeover penalty, called the changeover delay. The response re-
quirement does not appear to affect the allocation of behavior (see, e.g., Brown-
stein and Pliskoff, 1968); the changeover delay, however, does.

The changeover delay is a changeover-initiated period, usually quite brief,
during which reinforcement is withheld. This contingency greatly reduces
switching rates and under certain circumstances can have a pronounced effect on
how subjects allocate their behavior. The typical resuit is that if the subject
divides its time more or less equally between the alternatives, adding a change-
over delay or increasing its duration will differentiate the amounts of time the
subject spends responding so that time allocation will match reinforcement allo-
cation. Consequently, the changeover-delay duration has frequently figured in
discussions of deviations from matching (e.g., Baum, 1974, 1979; de Villiers,
1977), and some authors have suggested that this contingency is a necessary con-
dition for matching (e.g., Shimp, 1975). However, it is also the case that subjects
will match in procedures that do not use the changeover delay (e.g., Bradshaw,
Szabadi, and Bevan, 1976; Findley, 1958; Heyman, 1979). Possibly, then, the
changeover delay amplifies the consequences of time allocation (Rachlin et al.,
1976, originally suggested this) so that for some subjects, the less sensitive, the
changeover delay is a necessary condition for matching, whereas for other sub-
jects, the more acute, the changeover delay is not a necessary condition. This
hypothesis can be evaluated by calculating the effects of the changeover delay
on expected reinforcement rate,

For the fixed-time switching pattern it is possible to determine the effects of
the changeover delay on reinforcement rate. In addition, this pattern may not be
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greatly unlike actual patterns of switching, because subjects learn not to switch
during the delay period (Baum and Rachlin, 1969). The derivation closely fol-
lows the derivation of Eq. (20.4) and is also similar to Houston and McNamara’s
account (1981).

As in the previous models, it is necessary to distinguish the different ways for
reinforcement to occur. First, some reinforcers are not postponed by the change-
over delay. This is possible if the subject is present and the changeover delay has
elapsed. The expected number of times this will happen per visit at alternative
iis (7; — C;)/ V;, where C; is the duration of the changeover-delay requirement.

Second, some reinforcers are postponed by the changeover delay. This occurs
either when the reinforcement timer elapses while the subject is at the other
alternative or it occurs just following a changeover during the delay period.
These two possibilities are restricted to the interval T; + G, where C; is the delay
duration at one alternative and T; is the fixed time the subject spends at the
other alternative. Therefore the probability that the reinforcer is postponed by

the changeover contingency is 1 — e (Ti*C Vi, This exhausts the different

ways for reinforcement to occur. The expected reinforcement rate is, then,

Ti-C - T2rEniv, T, -C,

E(R) = + + +
Vi(Ty +T3) T, +T, Vo (Ty +T,)

1_6"’(T1 +C1)/V1

20.6
T+ T, (20.6)

Although Eq. (20.6) is superior to Egs. (20.3a) and (20.4a) in that it takes
into account the changeover delay, it is an incomplete description of perform-
ance. Missing is the correlation between the duration of the changeover-delay
requirement and the changeover rate: An increase in delay produces a decrease
in rate. A number of investigators have quantified this relation (see Hunter and
Davison, 1978; Stubbs, Pliskoff, and Reid, 1977); however, Eq. (20.5) gives a
somewhat simpler account.

Recall that according to Eq. (20.5), changeover rate varies with time alloca-
tion and the reciprocal of the constant sum of the changeover rates, called 7 for
inertia. The magnitude of this constant will depend, in part, on procedural fac-
tors, such as the distance between the alternatives, the delay requirement, and
so on. The simplest possible structure is / = a + b (C). That is, the tendency to
switch, /, varies linearly with the delay requirement:

2 _ 20-p) _ 2p0-p)
E(Ty)+E(Ty) I 2+5(C) (20.7)

where E'(T;) is the expected time per visit to side i,
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Figure 20-5. The relation between changeover delay (COD) duration and
changeover rate. On the x axis is the changeover requirement; on the y axis
is the changeover rate in reciprocal form (cycle duration). Rat s-1 is from an
experiment conducted by Shull and Pliskoff (1967); Pigeon 10838 is from an
experiment conducted by Silberberg and Schrot (1 974).
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Figure (20-5) shows the fit of Eq. (20.7) to some representative data. On the
x axis is the duration of the changeover delay requirement. On the ¥ axis change-
over rate is plotted in reciprocal form (the sum of the two average visit times,
sometimes called cycle time). Rat s-1 is from a study by Shull and Pliskoff
(1967) in which the changeover delay was varied from 0.0 to 20 seconds. Pigeon
10838 is from a study by Silberberg and Schrot (1974) in which the changeover
delay was varied from 0.0 to 30 seconds. Equation (20.7) predicts changeover
rate quite precisely, except for a slight tendency to underestimate the rate in the
0.0-seconds changeover-delay condition (that is, no changeover-delay require-
ment). Note, that Eq. (20.7) assumes a Markov model of switching (see Heyman,
1979). In contrast, momentary maximizing theories and melioration theories of
switching suggest (if not imply) a feedback driven, adjustive switching process.

Figure 20-6 shows the relation between time allocation, changeover delay,
and overall reinforcement rate for a conc VT 60-second VT 180-second sched-
ule. The y axis is the expected overall reinforcement rate. The changecver delay
was varied from 0 to 27 seconds, and changeover rate was determined from the
best-fitting parameter values for 7 in a continuous response procedure in which
the changeover delay was varied (Brownstein and Pliskoff , 1968).

Figure 20-6 shows that for typical changeover delays, the region circum-
scribed by the first and third curve, changes in time allocation have little effect
on the overall reinforcement rate. For example, at a 3-second changeover delay,
a shift from 0.60 to 0.75 in time spent at the VT 60-second alternative increases
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Figure 20-6. The relation between time allocation and reinforcement rate in
a concurrent VT 60-second VT 180-second schedule that uses a changeover
delay. The changeover delay does little to change the overall consequences of
time allocation, yet it frequently has a large effect on time allocation.
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Table 20-1. Overall expected reinforcement rate (reinforcements/hour) in
a concurrent VT 60-second VT 180-second schedule as a function of time
allocation p and changeover delay duration. The results were generated by
Eq. (20.6). The visit times were set to Ilp and 1/(1 -p). I was determined by
Eq. (20.7), with the parametersa = 1.0 and b = 1.1.

Time on VT 60-Second Schedule and
Overall Reinforcements per Hour

COD Duration .50 .60 .70 .75 .80
0 77.71 78.27 78.56 78.61 78.56

3 75.90 76.20 71.27 77.46 71.57

9 69.62 71.40 72.98 73.40 73.74

27 56.60 60.10 61.66 63.07 64.80
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the expected reinforcement rate by less than 2 percent. Table 20-1 provides
some additional numerical values.

CONCURRENT SCHEDULE PERFORMANCE,
MATCHING AND MAXIMIZING PREDICTIONS

The figures in the preceding section show how changes in the allocation of time
responding affect overall reinforcement rate. In this section the allocation of
time that maximizes the overall reinforcement rate is calculated. The calcula-
tions are then compared with data from three procedures, which differ in terms
of the contingency between time allocation and overail reinforcement rate. That
is, each procedure has a different maximizing solution. If subjects respond so as
to maximize overall reinforcement rate then the predictions and observations
should converge. Similarly, if subjects maximize some more complex quantity,
such as reinforcement rate minus the costs of responding, then predictions and
observations should vary systematically. Of course, the overall consequences of
responding, however measured, need not exert any control on time allocation.
For example, the acquisition models of Herrnstein (1979), Killeen (1982) and
McDowell and Kessel (1979) are blind to the differences that distinguish the
three procedures analyzed next, and, consequently, these models predict that
subjects should come to the same asymptotic time allocations in three quite dif-
ferent contingencies.

The relation between time allocation and overall reinforcement rate maximi-
zation was evaluated in the following way. First, the division of time that maxi-
mizes reinforcement rate was determined. This was done by varying p in the
schedule reinforcement rate feedback equations. Second, for the value of p that
maximized reinforcement rate, the corresponding reinforcement rates for alter-
native 1 and alternative 2 were extracted. Third, the maximizing solutions were

plotted as a function of their corresponding reinforcement rates according to the
linear model (Baum, 1974):

log T1/T, max = log a+b log R{/R, max (20.8)

where 7; is the optimal amount of time spent at alternative i and R, plus R,
sum to the maximum reinforcement rate. Fourth, the best-fitting parameter val-
ues (Eq. (20.8)) for the maximizing solutions were compared to the best-fitting
parameter values (Eq. (20.8)) for the typical subject. In other words, Eq. (20.8)
measured whether subjects in experiments maximized overall reinforcement rate.

The three different procedures that are analyzed in this way are concurrent
variable -interval with two independent timers, concurrent variable-interval with
interdependent timers, and a concurrent procedure in which one alternative is a
variable-interval schedule and the other is a variable-ratio schedule (conc VI
VR). In addition, for the independent-interval procedure, there is an analysis of
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the effects of the changeover delay and response requirement on the maximiz-
ing solutions.

Maximizing in Concurrent VI VI

Figures 20-7 and 20-8 show the maximizing policies for experiments with a
continuous-response requirement and no changeover delay. Figure 20-7 is for
fixed-time switching (Eq. (20.4a)), and Figure 20-8 is for Poisson switching
(EQ. (20.3a)). The schedule values, ¥; and V, , were varied so as to maintain
a constant programmed reinforcement rate of 80/hour, and / was set at two dif-
ferent values. The smaller one, 4.3 seconds, corresponds to the parameters for

Figure 20~7. A comparison of typical performance and reinforcement rate
maximization predictions in concurrent VT VT schedules. The maximization
predictions were generated by Eq. (20.4a) for fixed-time switching. The de-
scription of the typical subject is based on Baum’s (1979) review. The shal-
lower slope corresponds to a lower changeover rate.
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Figure 20-8. A comparison of typical performance and reinforcement rate
maximization predictions (Poisson switching) in concurrent VT VT schedules.
The maximization predictions were generated by Eq. (20.3a) (Poisson switch-
ing). Note that the maximization solutions are virtually independent of pat-
tern of switching. Put somewhat differently, large differences in response
pattern in concurrent schedules yield only small differences in outcome.
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I'in an experiment with pigeons (Brownstein and Pliskoff, 1968), and it sets
changeover rate at approximately 7/minute for p = 1/2. The larger value, I = 34
seconds, gives a changeover rate of about I/minute at p = 1/2. The continuous
diagonals are the best-fitting straight lines to the ratios of time spent responding
that maximized reinforcement rate, and the broken diagonals are the best-fitting
straight lines to the ratios of time spent responding for the typical subject.

The parameters for the typical subject are based on reviews by Baum (1974,
1979) and de Villiers (1977). According to those authors, fitting Eq. (20.8) to
the available time-allocation data yields a median slope of approximately 1.0
and a median intercept, for experiments with symmetrical response requirements,
of approximately 0.0. In other words, time allocation in concurrent schedules

does not systematically vary from simple matching (slope of 1.0 and intercept
of 0.0).
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Equation (20.8) reveals that the maximizing solutions closely approximated
performance in concurrent interval schedules. However, the linear model also
reveals that the discrepancies, albeit small, were systematic. First, the slopes for
the maximizing solutions fell slightly short of 1.0, with lower slopes for lower
changeover rates. For fixed-time switching, the slopes were 0.93 and 0.98; for
Poisson switching, the slopes were 0.91 and 0.96. Second, the relation between
log Ty /T, max and log R, /R, max was not precisely linear. Rather, there was
the suggestion of a sigmoidal function. In contrast, the empirical deviations from
Equation (20.8) are symmetrical (see Baum, 1979).

Figure 20-9 shows the maximizing predictions for procedures that use a
changeover delay. As pointed out previously, the changeover delay has the effect
of shifting time atlocation from indifference, 1/1, to matching, R, /R, , so that
from the point of view of maximization theory, the changeover delay should
have a sizable effect on the maximizing solutions. Comparison of Figure 20-9
with Figures 20-7 and 20-8, however, show that the changeover delay has a
rather modest effect of the relation between time allocation and reinforcement
allocation. For example, without the changeover delay, the slopes range from
about 0.91 to 0.98, and with the changeover delay, the slopes range from about
1.1to1.2.

Figure 20-10 displays the maximizing solutions for concurrent schedules that
have a changeover delay and a response requirement. In this type of procedure
each alternative has a manipulandum and the subject switches back and forth
between them. Reinforcement occurs either after a changeover or after an inter-
response time on one of the manipulandums. Formally, the analysis of inter-
response times is the same as the previous analysis of interchangeover times (Egs.
(20.3), (20.4) and (20.6)). For example, an exponential interresponse time dis-
tribution extends the expected interreinforcement interval by the mean inter-
response time (see Herrnstein and Heyman, 1979; Nevin and Baum, 1980).

Figure 20-10 shows that the slopes fit to the maximizing solutions vary as a
function of local response rate. At high local response rates (120/minute), the
slope is greater than 1.0, and at low local response rates (20/minute) the slope
is lower than 1.0. Since the lines fit to the maximizing solutions cross in this
way, there may exist some combination of local response rates and changeover
values for which matching and maximizing are identical. However, the evidence
presented in this chapter indicates that the similarity of matching and maximiz-
ing in independent schedules is fortuitous.

Maximizing in Interdependent V1 VI

Figures 20-7 to 20-10 show the maximizing solutions for concurrent schedules
with independent timers, Next schedules are analyzed in which the alternatives
are not independent. The purpose of this modification is to ensure that the sub-

ject receives the programmed relative reinforcement rate (see, e.g., Stubbs and
Pliskoff, 1969, and subsequent discussion).
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Figure 20-9. Performance and maximization theory predictions in proce-
dures that use a changeover delay. The changeover delay can have a quite
sizable effect on time allocation, yet it has a small effect on maximization
policy. This is consistent with the general finding that large differences in
behavior produce virtually the same outcomes in concurrent schedules. Note
that increasing the changeover delay duration does not yield steeper slopes
because of the way that the delay interacts with obtained reinforcement pro-
portions (see Herrnstein, 1970).
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An interdependent procedure can be arranged in two nearly equivalent ways
(Fantino, Squires, Delbruck, and Peterson, 1972; Stubbs and Pliskoff, 1969).
The model presented (Eq. (20.9)) is based on Fantino et al.’s (1972) method.
These researchers used two variable-interval timers. When one timer set up a
reinforcer, the other was halted and not restarted until the reinforcer was col-
lected. Thus, if the unattended timer was primed, the attended timer stopped
running also. This method ensures that reinforcements are obtained in the order
that they are made available, which, in turn, implies that the obtained reinforce-
ment proportions are equal to the arranged reinforcement proportions. The
method arranged by Stubbs and Pliskoff (1969) results in a nearly identical con-
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Figure 20-10. Performance and maximization theory in concurrent sched-
ules that use a changeover delay and a response requirement. The tendency to
switch, /, was calculated according to Eq. (20.7), with the parametersag = 1.0
and b =1.1 (Shull and Pliskoff, 1967). The maximization predictions vary
with local response rate and for some combinations of changeover delay dura-
tion and interresponse time duration, it appears logically possible for per-
formance and maximization to converge.
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tingency: (1) Reinforcement availability at the unattended alternative prevents
reinforcement at the attended alternative; (2) reinforcements are obtained in the
arranged order; (3) and obtained reinforcement‘proportions equal arranged rein-
forcement proportions. The only difference is that Stubbs and Pliskoff used a
single timer so that a reinforcement rather than a changeover resets the expected
time to the next reinforcement (see Staddon, Hinson, and Kram, 1981, for a
fuller discussion of this point). However, this difference has little effect on the
relation between time allocation and reinforcement rate, so that Eq. (20.9)
quite accurately predicts the expected reinforcement rate for both methods of
arranging interdependent schedules (see, e.g., Heyman and Luce, 1979).
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Appendix 20C provides a derivation of the equation for expected reinforce-

ment rate in an interdependent procedure. The result is as follows (also see Hey-
man and Luce, 1979):

! 1- 1-
ER)= 2 _ p P p

+ +
Vi Vitl+(1-p)v,) Vi +1/u, Vs

_ _(-p)yr 14

—_— (20.9)
aU+pVy) TV, + g,

The second and fifth terms give the expected rate of loss at an attended but
not running timer. For example, while the subject is at side 1, the probability
that the timer there has come to a halt increases according to the expression
given by Eq. (20.1). Once it stops, it remains so until the next switch, and this
event has the expectation given by Eq. (20.2). The result is included in Eq.
(20.9). Note that this model differs quite markedly from the equations for inde-
pendent timer procedures. For example, if the subject never switches in an inter-
dependent procedure, reinforcement rate decreases to zero.

Figure 20-11 shows the relation between typical performance and reinforce-
ment rate maximization in interdependent schedules. The maximization solu-
tions reflect the structure of the contingency. That is, since not switching re-
duces reinforcement rate at both sides, the subject must not spend too much
time at the richer alternative. Thus the optimal policy is to allocate time about
midway between 1/1 (indifference) and ViV, (perfect matching). Subjects in
experiments do not allocate time according to this contingency, however.

ment allocation. For example, in the most exhaustive review to date, Baum
(1979) concluded that time allocation was the same in independent schedules
and schedules that maintained a fixed relative reinforcement rate.

Maximizing in Concurrent VI VR

The third procedure in this comparison uses a ratio schedule on one alternative
and an interval schedule on the other alternative (conc VI VR). On the ratio
schedule, reinforcement rate is proportional to time spent responding so that
changes in time allocation produce large changes in reinforcement rate. In con-
trast, Figures 20-3 and 20-6 showed that on interval schedules changes in time
allocation have little effect on reinforcement rate. Accordingly, it is not unrea-
sonable to expect subjects to allocate time rather differently when a ratio sched-
ule controls reinforcement.

The equation for expected reinforcement rate on the ratio schedule is £ (R) =
(1 —p)/VRr,, where 1 — b is the proportion of time spent responding, VR is
the mean ratio requirement, and r, is the mean local interresponse time. Rein-
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Figure 20-11. Performance and maximization theory in interdependent
interval schedules. The characterization of performance is based on Baum’s

(1979) review. Maximization theory predictions diverge widely from how
subjects actually behave.

INTERDEPENDENT VI VI

2.0 T T
, 7/
PERFORMANCE ,
/7’ )
v
L.O
l:N
o=
o O
@]
-
=10

i ]

-50 310 o) 1.0
LOG R/R,

N
o

forcement rate on the interval schedule is as Ppreviously described in Egs. (20.3)

and (20.4). Therefore, the expected overall reinforcement rate for a conc VI VR
is

E(R) = p/(VI+r)+ (1 =p)/(VI+1/u)+ (1 =p)/VRr, , (20.10)

where r; is the local interresponse time on the VI alternative, r, is the local
interresponse time on the VR alternative, and the other symbols are as defined
previously.

The first two expressions give the reinforcement rate on the VI alternative.
With probability p the subject receives rate 1/ (VI + r;), the mean programmed
interval plus the mean local interresponse time, and with probability 1 — p, the
subject receives rate 1/(VI+ 1/u,;), the mean programmed interval plus the
mean time per visit on the ratio alternative. Note that these two rates are not
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Figure 20-12. Performance and maximization theory predictions in a con-
current VI VR experiment (Herrnstein and Heyman, 1979). The open sym-
bols show the time-allocation measures for individual subjects. The filled
symbols show reinforcement rate maximization predictions.
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very different from each other for typical schedule and behavior rates. The third
expression is the rate on the ratio alternative. In contrast to the interval sched-
ule, reinforcement rate is zero if the subject is absent, and this occurs with prob-
ability p.

Figure 20-12 compares the maximizing solutions with performance in a con-
current VI VR experiment (Hermnstein and Heyman, 1979). The maximizing
solutions were derived from Eq. (20.9) (filled symbols) and the subjects were
pigeons responding for grain (open symbols). The coordinates are in terms of the
ratio VI/VR so that positive values on the y axis indicate that more time was
spent on the VI alternative and negative values indicate that more time was spent
on the VR alternative. '

The maximizing predictions invariably fall into the lower left quadrant of the
figure, with a slope of 0.72 for the best-fitting line. This means that in order to
maximize overall reinforcement rate, the subjects should have spent most of
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their time on the VR alternative and from time to time briefly sampled the VI
alternative to check if a reinforcer had set up there.

In contrast to these predictions, the subjects spent most of their time on the
VI alternative and did so in a way that was consistent with performance in con-
current-interval schedules. The slope of the best-fitting line is 1.04, which is
about the value found in independent and interdependent interval schedules.
This means that the allocation of time spent responding did not respect the dif-
ferences in reinforcement contingencies. Moreover, the costs of contingency
indifference were rather great: On the average, the subjects would have received

about 60 more reinforcements an hour by maximizing (see Herrnstein and Hey-
man, 1979).

SUMMARY AND OTHER APPROACHES

Figures 20-7 to 20-12 show that in three quite different procedures subjects
responded so that the ratios of time spent at each alternative were equal to the
ratios of reinforcement obtained at each alternative; that is, Ty /T, =R, /R,
(correcting, if necessary, for bias). In contrast, there was no systematic relation
between the maximizing policies and time allocation. This absence of covaria-
tion with the maximizing solutions implies that subjects in concurrent schedules
do not maximize value, where value includes the overall reinforcement rate. Put
somewhat differently, these results say that in concurrent schedules time alloca-
tion is not controlled by its overall consequences.

The conclusion that subjects in operant reinforcement schedules are not con-
trolled by the molar consequences of their behavior is at odds with recent eco-
nomic (Rachlin et al., 1981) and biologically (Staddon, 1980) oriented theories
of instrumental (adaptive) behavior. Some support for these theories comes from
Staddon and Motheral’s (1978) mathematical model of the concurrent VI VI
contingency. Since this model does not agree with the mathematics presented in
this chapter, some comments are necessary.

Staddon and Motheral claim that the expected rate of reinforcement in a con-
current schedule with independent timers is

E(R) = Y(Vi+1/x)+1/(V3 +1]y) , (20.11)

where x and y are the overall response rates (responses at a side divided by the
entire session time, in contrast to the local response rates, discussed in the pre-
vious sections of this chapter, which are responses at a side divided by the por-
tion of time spent at a side). Staddon and Motheral’s equation says that the
expected time between reinforcements is the mean timer interval V; plus the
mean overall interresponse time. But this cannot possibly be correct since in
concurrent schedules reinforcement occurs after a local interresponse time or an
interchangeover time (there are no other possibilities), and the overall response
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rates have no necessary connection with either of these measures. For example,
it is quite possible for two subjects to produce equal overall response rates but
obtain quite different reinforcement rates, because one switches frequently and
the other switches infrequently.

Staddon and Motheral (1979) anticipated this criticism and write that Eq.

(20.11) implies a changeover rate and local response rate. They write that
changeover rate is

C = 2xy/(x+y) (20.11a)

and that local response rate is
2xy[C (20.11b)

where C is the overall changeover rate (Eq. (20.11a)). These definitions are in-
correct, however. In other words, according to Staddon and Motheral change-
over rate is a function of response rate. However, one of the basic features of
concurrent schedule performance is that switching rates and response rates are
independent measures. For example, switching rate varies with time allocation,
whereas response rates remain approximately constant with changes in time allo-
cation (e.g., Stubbs and Pliskoff, 1969).

EQUALIZATION AND MOMENTARY
MAXIMIZING THEORIES

Equalization theories of matching (e.g., Herrnstein and Vaughan, 1980; Myer-
son and Miezin, 1980; Staddon, 1977) predict that concurrent schedule per-
formance is independent of molar consequences and that switching will vary in
an orderly way with local reinforcement rates. Figures 20-7 to 20~12 confirmed
independence. Next the predictions for switching are tested.

In a concurrent schedule that uses interval schedules, the local rates of rein-
forcement rise and fall with switching. A switch produces an increase, and, then,
there is a decline until the next switch. This means that the longer the subject
stays at one side, the relatively greater the local rate of reinforcement at the
other side. Therefore, if equalization theory describes concurrent schedule per-
formance, the probability of a changeover should increase as a function of time
since the last changeover. Figure 20-13 tests whether this prediction holds.

The figure shows the temporal pattern of switching in three different concur-
rent-schedule experiments. On the x axis is the number of responses or amount
of time (pigeon B 64) since the last switch; the filled circles are the conditional
probabilities of switching from the richer alternative; and the open circles are the
conditional probabilities of switching from the leaner schedule.

Pigeons 209 and 241 were in an experiment that used an interdependent
schedule (Heyman, 1979), and the temporal pattern for pigeon 209 is represen-
tative of the main findings of the study. The switching probabilities were station-
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ary (chi-square test) and independent of run length. This means that switching
did not depend on changes in local reinforcement rates. The data from pigeon
241 are characteristic of the minority of instances in which switching probabili-
ties were not stationary (3 of 24 cases). The probabilities rose and fell in an
alternating pattern. This corresponds with previous reports (e.g., Blough, 1966)
of response bursts, but it is incompatible with the changes in local reinforcement
rate described in equalization theory.

Pigeon H was in a discrete-trials experiment (Herrnstein, unpublished, de-
scribed in de Villiers, 1977). Reinforcement was arranged by a concurrent VI
135-second VI 270-second schedule (independent), the intertrial intervals were
22 seconds, and the relative probability of reinforcement for a switch, counting
from the last changeover, rose from about 0.50 to about 0.90. Nevertheless, the
subjects were no more likely to switch after 6 trials than after 1 trial.

Pigeons B 64, like pigeons 209 and 241, was in an experiment that used an
interdependent procedure (Silberberg, Hamilton, Casey, and Ziriax, 1978). The
x axis is time, not responses; the broken line plots the probabilities of switching
from the leaner schedule; and the solid line plots the conditional probabilities
for the richer schedule. Again, the pattern predicted by local reinforcement rate
control does not emerge. Instead, switching was either independent of time
(from the richer schedule) or showed a peak and then a gradual decline with
time (from the poorer schedule).

Figure 20-13 also evaluates a somewhat similar theory of matching, momen-
tary maximizing. In this account (Shimp, 1969), the local reinforcement proba-
bilities that accompany switching are the independent variables, and the psycho-
logical principle is that subjects switch to the schedule that is most likely to pro-
vide the next reinforcer. For example, in a concurrent variable-time schedule
(no response requirement, e.g., Baum and Rachlin, 1969; Brownstein and Plis-
koff, 1968) the subject should switch when the probability of reinforcement

at the unattended alternative, 1 — e li IV , is greater than the probability of
reinforcement at the attended alternative, 1/¥;, where ¢ is time since the last
changeover. For other procedures the calculations are slightly different, but for
any concurrent schedule, momentary maximizing predicts that the subject
should switch at some target (optimal) time. Assuming a normally distributed
error about the target time, it can be shown that the resulting distribution of
interchangeover times will yield a regularly increasing pattern when plotted in
the coordinates of Figure 20-13 (see Thomas, 1971, for a proof). Figure 20-~13,
however, shows that in three different concurrent-schedule experiments, the
momentary maximizing pattern does not occur.

The data presented in Figure 20-13 indicate that switching is independent of
local reinforcement rates and local reinforcement contingencies. In contrast,
Shimp (1969) and more recently Silberberg et al. (1978) claim that momentary
maximizing theory predicts switching. These authors, however, do not plot their
data in terms of the relevant reinforcement probabilities. Rather, they use a
cumulative-run length measure that bears no obvious relation with the rein-
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forcement contingencies. And, in fact, when the data are replotted in a way that
corresponds to how reinforcement is obtained, the momentary maximizing pre-
dictions are absent, as in Figure 20-13 (see Nevin, 1979).

CONCLUSION

The basic tenet of operant psychology is that behavior is controlled by its conse-
quences. Accordingly theories of matching have typically assumed that some
sort of behavioral consequence determines time allocation in concurrent sched-
ules. Figures 20-7 to 20-12, however, showed that time allocation is indepen-
dent of its overall consequences, and Figure 20-13 showed that the dynamics
of time allocation, switching, is independent of its immediate consequences.
Together, these data suggest the conclusions that how much time an organism
spends at a reinforcement schedule is an unconditioned effect and that the elici-
tation processes conform to the matching equation. Finally, since the match-
ing relation was initially formulated in terms of overall response rates (Herrn-
stein, 1961) something needs to be said about this way of measuring behavioral
allocation.

Overall response rate depends on the amount of time spent at the schedule
and it also depends on the topography of the emitted response. For example,
a subject in a concurrent schedule experiment may spend exactly the same
amount of time at each alternative but respond at very different overall rates
because at one side the lever takes 1 second to depress and at the other side the
lever takes 5 seconds to depress. In turn, these two dimensions of response rate
depend on reinforcement contingencies. Time spent responding, as described
previously, is a function of variables having to do with shear reinforcement
frequencies, independent of the feedback relation between a response and rein-
forcement. In contrast, response topography, as is shown next, appears to depend
on the feedback relation independently of reinforcement frequency. This is a
very different account of response rate than given by cost/benefit analyses (e.g.,
Baum, 1973; Rachlin, 1980), and this paper concludes with an outline of some
of the relevant evidence.

In experiments in which variable-interval and variable-ratio schedules main-
tain equal reinforcement rates, subjects respond approximately twice as fast for
the variable-ratio reinforcement (Herrnstein and Heyman, 1979). Importantly,
the local response rates ratio was invariant; it did not depend on absolute rein-
forcement rates or absolute response rates. In contrast, variable-interval and
variable-ratio reinforcers maintained virtually identical amounts of time spent
responding (see Figure 20-12 and corresponding discussion). That is, time allo-
cation depended only on the frequencies of reinforcement. These facts are com-
patible with the view that a reinforcement schedule simultaneously elicits and
shapes behavior: Reward impels activity, independent of the contingency, and

the contingency shapes activity into an effective response, independent of activ-
ity level.

3
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APPENDIX 20A

The pattern of switching affects the probability of reinforcement for a switch
but has no affect on reinforcement obtained between switches. Therefors the
pattern that produces the highest return on switches will produce the highest
overall reinforcement rate. Equations (20A.1)—(20A.3) give the probabilities
for the patterns shown in Figure 20-2. For an exponential distribution of inter-
changeover times, the expected probability of reinforcement for a switch is

(1 + Vi) (20A.1)

For a uniform distribution of interchangeover times, the expected probability
of reinforcement for a switch is

_e—TllV,- —T2/V]~.“ =T,1V;

+1-¢ At l-e BT, (20A.2)

n

where the average time between switches is (7},/2) + 1/2 and (1,/2)+(1/2) =
1/u; (Eq. (20A.1)) = T; (Eq. (20A.3)). For a point-mass distribution of inter-
changeover times (fixed-time switching) the expected probability of reinforce-
ment for a switch is equal to:

1 TilYs (20A.3)

The relative magnitude of Eqs. (20A.1) - (20A.3) take the order (20A. 3)>
(20A.2) > (20A.1). Therefore Poisson switching produces the lowest reinforce-
ment rate and fixed-time switching produces the highest reinforcement rarte. In
addition Houston and McNamara (1981) have shown that fixed-time switching is
the optimal pattern in that no other pattern of switching can produce a higher
reinforcement rate. In contrast, Poisson switching produces a lower reinforce-
ment rate than any regularly increasing pattern.

APPENDIX 20B

Overall changeover rate may be written 2/(E(ty) + E(t,)), where E(1;) is the
expected time per visit to side i. Note that the sum of the two local changeover
rates is approximately constant (Heyman, 1979; Hunter and Davison, 1978;
Nevin and Baum, 1980; Myerson and Miezin, 1980). Let I equal the reciprocal
of this sum: I = 1/(p; + u,). Next, note that ifp =y [(uy + uy) then Ly, =
I/(1-p) and 1/u, = I/p. That is, the average time at side 1 is /(1 —p) and the
average time at side 2 is //p. Therefore changeover rate can be rewritten as
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2 = 2 - 2p0-p) (20B.1)
E(ty) + E(1y) I I I

APPENDIX 20C

Assume an interdependent concurrent VT VT schedule with exponentially dis-
tributed intervals and a Poisson switching process. If the interval at the attended
side elapses, the reinforcement is delivered immediately and the timer at the un-
attended side is not halted. In contrast, if the timer at the unattended side sets
up, both timers are halted. The conditional probability of this occurring was cal-

culated previously (see Eq. (20.1)). The result is 1 /(1 + V;1;). Therefore the
expected reinforcement rate at side 1 is

1-
L P_ _ Ld : (20C.1)
Vi Vi+ i, Vil+ V)
For side 2 the expected rate is
1- 1-
L . Sl — (20C.2)
Va Vy + 1/, Va(1+Vyu,)

Note that reinforcement rate goes to zero if the subject does not switch (for ex-
ample,p = 0and u, = 0).
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