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Matching and Maximizing in Concurrent Schedules

Gene M. Heyman
Harvard University

In a recent article, Staddon and Motheral derived a mathematical model of
responding in concurrent variable-interval-variable-interval schedules. Accord-
ing to this model, maximization of overall reinforcement rate predicts the
operant matching law. However, Staddon and Motheral's derivation ignores a
fundamental aspect of the concurrent schedule contingency. There are two
simultaneously available schedules. A reinforcer, therefore, can occur in two
ways, (a) following two consecutive responses on the same schedule, and (b)
following a switch between the two schedules. Staddon and Motheral's model
does not distinguish between these two possibilities, and this omission leads to
an incorrect estimate of the expected reinforcement rate. In addition, the exact
density function for obtained interreinforcement times in a concurrent interval
schedule shows that matching and maximizing are different.

Research in operant psychology suggests that
choice conforms to a simple algebraic symmetry.
In experimental procedures that arrange the same
type of schedule at each alternative, for example,
concurrent variable interval - variable interval
(VI-VI), the proportionate distribution of be-
havior between the two schedules generally ap-
proximates the distribution of reinforcements
between the two schedules; whereas in proce-
dures that arrange a different type of schedule
at each alternative, for example, concurrent vari-
able interval - variable ratio (VI-VR), the ratios
of behavior between the two schedules system-
atically vary with the ratios of reinforcement.
(See Baum, 1974, and de Villiers, 1977, for re-
views.) This set of relations is referred to as
the matching law (Baum, 1974; Herrnstein,
1970), and experiments show that matching has
wide generality over species and procedures. For
example, every species tested to date shows the
predicted symmetry. However, despite extensive
research, there is no consensus as to why sub-
jects match responding to reinforcement (Stad-
don, 1977). In a recent article, Staddon and
Motheral (1978) suggest a possible answer. They
claim that in the concurrent VI-VI situation,

I thank R. D. Luce, B. A. Williams, and H. J.
Wilkinson for their helpful remarks on an earlier
draft of this article.

Requests for reprints should be sent to Gene M.
Heyman, Department of Psychology and Social Re-
lations, William James Hall, Harvard University,
Cambridge, Massachusetts 02138.

"matching . . . can . . . be derived from rein-
forcement maximization . . ." (p. 436). The fol-
lowing comments review their argument.

Staddon and Motheral base their conclusion
on a mathematical model of concurrent VI-VI
performance. They derive an equation that gives
the expected overall reinforcement rate as a
function of the subject's choices between the two
VI schedules. According to this equation, the
maximum expected reinforcement rate is obtained
at the choice proportions predicted by the match-
ing law, so that in principle, the matching law
can be derived from maximization. In a rather
similar analysis, which Staddon and Motheral
refer to, Heyman and Luce (1979) also calcu-
lated the maximizing choice proportions for con-
current VI-VI schedules. However, they con-
cluded that maximizing overall reinforcement rate
does not yield the matching law. The different
findings result from Staddon and Motheral's as-
sertion that in the concurrent situation, it is pos-
sible to represent responding on a given schedule
by a single exponential distribution of inter-
response times. A description of performance in
concurrent VI-VI schedules shows that this as-
sertion is not correct.

Figure 1 displays the sequence of events in
concurrent VI-VI schedule performance.1 Sides
1 and 2 refer to the experimentally arranged re-
inforcement sources: two VI schedules, with

1 For the reasons given by Staddon and Motheral,
the changeover delay (Herrnstein, 1961) is not in-
cluded in this account.
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Figure 1. The sequence of events in a concurrent variable-interval-variable-interval schedule.
(The second and third lines show that the subject switched from side 1 to side 2 and then back
to 1. The spaces between the deflections indicate local interresponse times, a to b and d to e.
The filled deflections are reinforced responses. The first reinforcement on side 1 followed a local
interresponse time, because the timer set up while the subject was on side 1. The second reinforce-
ment on side 1 followed an interchangeover time, because the timer set up while the subject was
at side 2. In lines 1 and 4, a broken line indicates that a reinforcer is available and that the
timer is not running. The point at which a broken line becomes continuous indicates that a
response restarted the timer.)

associated discriminative stimuli and manipulanda
for responses. Lines 2 and 3, labeled response,
show that the subject switches back and forth
between the sides. For each side, two classes of
interresponse times can be distinguished. First,
there are those that occur between consecutive
responses on the same side, local interresponse
times, such as a to b and d to e. Second, there
are those that occur when a changeover to the
other side intervenes between the responses, such
as c to /. Next, the first and fourth lines show
how the timers operate. They are independent
of one another and are typically provided with
an exponential distribution of intervals. For the
duration of the interval, the timer operates in-
dependently of which side the subject is respond-
ing on, but when the interval is completed, the
timer stops (indicated by the broken lines) and
a reinforcer is set up and held until the next
response on the associated side. The "correct"
response produces a reinforcer (the filled de-
flections) and restarts the timer with a new ran-
dom time. Depending on the side the subject is
attending when the interval elapses, the rein-
forced response either follows a response on the
same side or follows a changeover from the other
side. In the first case, the delay from setup to
reinforcement is related to the local response
rate; in the second case, the delay is related to
the changeover rate.

A word on the distinction between local re-

sponse rate and overall response rate would be
helpful here, for Staddon and Motheral do not
refer to the former measure, whereas Figure 1
indicates that local response rate is a determi-
nant of reinforcement rate. Local response rate
is calculated by dividing the amount of time spent
on a side into the number of responses there.
In contrast, overall response rate is obtained by
dividing the entire session time into the number
of responses on a side. Both interchangeover
times and local interresponse times, then, are
averaged together to obtain the overall response
rate.

Given this background, Staddon and Motheral's
equation can be described and assessed. The equa-
tion involves two quantities: the programmed
VI timer rates and the subject's overall response
rates. First, the programmed interreinforcement
times for a VI schedule are often approximately
exponentially distributed. Staddon and Motheral
assume this for their model. (Note that the
scheduled times are the minimum possible inter-
reinforcement intervals; the subject increases
these times by not responding immediately to
a schedule that is set up.) Next, Staddon and
Motheral state that the overall rate interresponse
times are exponentially distributed. But as de-
scribed above, the overall rate is a mixture of
interchangeover times between the schedules and
local interresponse times on a given schedule.
Therefore, if the assumption of random respond-
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ing is maintained, the distribution of overall
interresponse times is the addition of two ex-
ponentials. This mixture, it is easy to show, is
not itself exponential. Indeed, it seems rather
unlikely that the mixture of any two probability
distributions could be exponential.

For a single distribution of interresponse times,
Staddon and Motheral's assumption, the expected
time between reinforcements for two VI sched-
ules is

/>! = I/a + I/* and Z>2 = 1/& + 1/y, (1)

where D( is the expected delay, a and b are the
average respective programmed VI timer rates,
and * and y are the average respective overall
response rates.

Staddon and Motheral claim that Equation 1
calculates the expected reinforcement rate for a
concurrent VI-VI schedule. The equation ex-
presses the expected time to the next reinforce-
ment on a side as the average timer interval plus
the respective average overall interresponse time.
But note that since the distinction between inter-
changeover times and local interresponse times
has been obscured, Equation 1 asserts that time
to reinforcement is independent of the side the
subject is responding on when a timer sets up.
In other words, Equation 1 does not distinguish
between delays to reinforcement due to inter-
changeover times and delays due to local inter-
response times. The following examples and
mathematical model of Figure 1 demonstrate
that this distinction is essential to calculating
the expected reinforcement rate for a concurrent
VI-VI schedule.

First, matching occurs in both continuous and
discrete response procedures. For a continuous
response requirement, say, standing on one or
the other side of the experimental chamber
(Baum & Rachlin, 1969), reinforcers are de-
livered immediately when they set up at the at-
tended side but are held until the next change-
over when they set up at the vacated side. For
attended setups, then, there is virtually no de-
lays, but for unattended setups, the delay until
reinforcement depends on the interchangeover
times, and the ratio of the average interchange-
over times is identical to the ratio of the over-
all amounts of time spent on each side. For the
discrete response procedure (e.g., a lever press),
the above discussion implies that the properties
of local responding need to be considered. At
both sides the local response rates are approxi-
mately equal (Baum & Rachlin, 1969; Catania,
1966; de Villiers, 1977) so that delays to rein-
forcement that occur within a run of responses
are virtually identical for each side and inde-

pendent of the allocation of time and responses
between the sides. In contrast, delays due to
switching are the same as in the continuous pro-
cedure. Second, as suggested by Figure 1, the
absolute duration of interchangeover and inter-
response times differ. Local response rates are
generally on the order of 60-120 per minute,
whereas the switching rate is invariably less,
generally on the order of about 3-15 per minute.
These examples emphasize the consequences of
the subject's location vis-a-vis a primed timer.
The following mathematical model calculates
these effects.

A model of Figure 1 can be derived directly
from the mean delays (Heyman, 1977) or from
the probability density function of interreinforce-
ment times (Heyman & Luce, 1979). Both natu-
rally observe the differences between interchange-
over and local interresponse times, but the direct
argument seems somewhat easier to condense.

Let ri equal the mean local interresponse time
on side i for exponentially distributed times.
(For a continuous response requirement, ri is
virtually zero, and for a discrete response pro- ,
cedure, it is reasonable to assume that r1 = r2.)
Let xi equal the conditional probability of a
switch from side i at time t since the last switch
for exponentially distributed interchangeover
times. This implies that the expected interchange-
over time is l/x1 for side 1 and l/*2 for side
2. Given these definitions, it follows that the
overall proportion of time spent on side 1 is
*2/'(*i + *a) = P- Or! m other words, the pro-
portion of time spent on side 1 is equal to the
relative rate of switching to that side. Next, let
I equal l/(*i + #2), one half the harmonic mean
of the interchangeover times (Heyman, 1977).
The data show that this quantity is approxi-
mately constant (e.g., Heyman, 1979; Hunter &
Davison, 1978), and it is assumed so here. Since
p, the overall distribution of time between the
schedules, is the behavioral variable of interest
for matching and maximizing, it is convenient to
make the following substitutions for the mean
interchangeover times:

1/xi =

and

x\/(x\

l / (*i-

= //(I - p}

= I/P- (2)

The quantity /, therefore, scales the overall ten-
dency to switch. For example, at p = .5 and /
equal to 10 sec, the average interchangeover times
are both 20 sec, but for the same p and / equal
to 25 sec, they are both SO sec.
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From Figure 1 and the preceding definitions,
it follows (Heyman & Luce, 1979) that the ex-
pected reinforcement rate in a concurrent VI-VI
schedule is

l - p

1- p
Vt+ !/(!- p)'

(3)

where RT is the overall expected reinforcement
rate, the sum from the two available schedules,
and in the denominators, F4 gives the average
programmed timer intervals.

The four terms of Equation 3 represent the
different ways reinforcement can occur. With
probability p, the subject is at side 1 when its
timer sets up, which occurs at a mean rate of
1/Fj, and the response requirement, if there is
one, adds a mean delay of rv With probability
1 — p, the subject is at side 2 when the timer
sets up, and there is a mean delay of ///>, until
the subject switches back and receives the rein-
forcer. These are the .two ways reinforcement
can occur at side 1. The two other terms corre-
spond to reinforcement at side 2.

The maximum reinforcement rate can be de-
termined from Equation 3 by varying p. It is
obtained at a value of p that closely approxi-
mates, but is not equal to, matching. This result
eliminates reinforcement rate maximization as a
logical condition for the matching law (given the
assumptions that led to Equation 3), but be-
cause of the similarity of the two predictions,
it does not eliminate maximization as a possible
psychological mechanism in concurrent schedule
performance. To test for psychological relevance
here, it is necessary to consider procedures in
which matching and maximizing predict mea-
surably different outcomes. Two such examples
have been examined.

In a variant of the standard concurrent VI-VI
schedule described in Figure 1, the two timers
are made interdependent. When one timer sets
up, the other is stopped. An expected reinforce-
ment rate equation for this procedure was de-
rived (Heyman, 1977; Heyman & Luce, 1979),
and it shows that the maximum reinforcement
rate is obtained by a distribution of behavior
that is about midway between equality (50%)
and perfect matching. For example, in an inter-
dependent concurrent VI 60-sec - VI 180-sec
schedule, the maximum reinforcement rate is pro-
duced by behavior proportions of about 52-
63%, depending on the absolute response rates.
Yet subjects frequently approach perfect match-
ing in this type of schedule (e.g., Stubbs & Plis-

koff, 1969). An expected reinforcement rate
equation was also derived for a procedure that
arranges a variable-ratio schedule at one side
and a variable-interval schedule at the other side
(Herrnstein Si Heyman, 1979). In this situation,
matching and maximizing differ even more widely
than in the interdependent schedule, yet subjects
closely approximate response ratios to behavior
ratios (Herrnstein & Heyman, 1979; and see be-
low for some of the details).

To summarize the discussion so far, then,
Staddon and Motheral's (1978) equation (Equa-
tion 1) does not correctly calculate the expected
reinforcement rate for performance in a con-
current VI-VI schedule, and models of concur-
rent performance that assume an exponential
distribution for changeover times and an ex-
ponential distribution for interresponse times
show that matching and maximizing yield differ-
ent predictions, with the obtained choice propor-
tions more closely approximating matching.

Staddon and Motheral also misinterpret some
previous theoretical accounts of maximizing in
concurrent schedules. In summarizing Rachlin,
Green, Kagel, and Battalio's (1976) computer
simulation results, Staddon and Motheral (1978)
commented that "matching can also be derived
from molar maximizing without making any as-
sumptions about switching" (p. 437). Rachlin et
al, however, did define switching. They set it at
6 per minute and assumed that switching was
independent of the subject's overall allocation
of time between the sides. This model, inciden-
tally, does not correspond to the data. Switching
varies in an orderly way with time and response
proportions, as described by Hunter and Davison
(1978), Stubbs and Pliskoff (1969), and others.
In referring to momentary maximizing theories
(e.g., Shimp, 1969), Staddon and Motheral
(1978) wrote: "Heyman and Luce have recently
shown that a more realistic switching model,
based on the observed pattern of random switch-
ing, fails to predict matching" (p. 437). This is
misleading. We failed to predict that matching
is a consequence of maximizing, and we were not
testing a momentary maximizing theory, but, like
Staddon and Motheral, we were concerned with
the relationship between the overall allocation of
behavior and reinforcement rate.

Staddon and Motheral refer to the Heyman
and Luce article without attempting to reconcile
the differences. The two approaches (Equations
1 and 3) predict different overall reinforcement
rates in all but one situation. The exception is
when the average interchangeover times and local
interresponse times are equal. That is, if r1 ~ r2
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and r1 = I/p and r,2 = //( 1 — p) , then

LP/(v1 + n) + (i
the Heyman and Luce model, is equal to l/t(Vl

+ x) , the Staddon and Motheral model. However,
this equality requires that the subject spend equal
proportions of time on each side and switch after
each response. This pattern of switching is not
observed, and, in effect, Figure 1 and Equation
3 imply that Staddon and Motheral's theory does
not describe concurrent performance, except when
the subject's distribution of time between the
two sides is approximately equal.

Staddon and Motheral conclude with a dis-
cussion of asymmetrical concurrent interval-ratio
schedules. They observed that performance in
this environment is not "congenial" to either
matching or maximizing. However, in one set of
studies (unpublished experiments by Herrnstein
described in Baum, 1974; de Villiers, 1977), the
slopes relating the ratios of responding to the
ratios of reinforcement did not systematically
differ from the matching prediction of 1.0, and
the pooled data yield slopes of 1.04 (Herrnstein
& Heyman, 1979). Moreover, the subjects (pi-
geons) spent most of their time on the VI sched-
ule side, whereas maximizing predicts a qualita-
tively different outcome, preference for the ratio
side; and a model similar to Equation 3 estimates
that the pigeons gave up about 60 reinforcements
per hour by matching rather than maximizing
(Herrnstein & Heyman, 1979). Staddon and
Motheral acknowledge these discrepancies, but
suggest that more general optimality or regula-
tory analyses are not ruled out. Perhaps not,
but their conjecture receives little support from
experiments in which subjects at 80% of their
normal body weight persist in matching, although
higher reinforcement rates are available by simply
redistributing the same responses so as not to
match. Consequently, it seems at least equally
plausible to conjecture that choice in concurrent
schedules is constrained by factors that are in-
dependent of the overall reinforcement rate. For
example, given the recent striking success of
molecular level conditioning models in classical
conditioning and discrimination learning (Res-
corla & Wagner, 1972), it would not be surpris-
ing if the asymptotic choice proportions in free
operant procedures were the consequence of mo-
lecular level response strengthening.
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